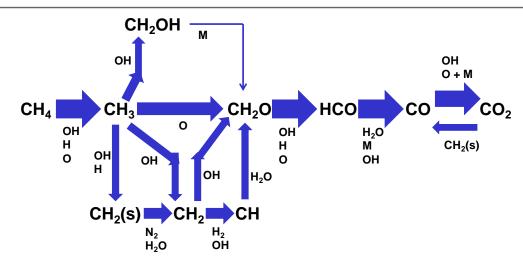


Methane Oxidation and Combustion Chemistry

Eric L. Petersen
Department of Mechanical Engineering
Texas A&M University
ARPA-E REMEDY Workshop


October 20, 2020

Introduction/Background

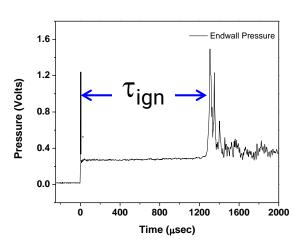
- Personal Background: Eric Petersen
 - 20 Years of experience in hydrocarbon combustion and related chemical kinetics measurements
 - Chaired Professor in Dept. of Mechanical Engineering at Texas A&M University
 - 36 journal and 100+ conference publications related to methane combustion and oxidation chemistry
- Texas A&M University and Turbomachinery Laboratory
 - Petersen Research Group: combustion experiments
 - Kulatilaka Group: optical diagnostics for reacting flows
 - Simon North (Chemistry): atmospheric chemistry

State of the Art on CH Oxidation Kinetics

- Chemical Kinetics Models for Predicting CH₄ and NG Oxidation
 - GRI 3.0: mechanism from 2000 (53 species, 325 rxns)
 - AramcoMech 3.0, 2018 (Curran et al.): for NG up to C5 (581 spec, 3037 rxns)
 - Several others (USCMech; Glarborg; Princeton; etc.)
- Current Validation:
 - T = 800 2500 K
 - P = 1 50 atm (fairly well known); 50+ atm (some validation)
 - Fuel-to-air equivalence ratio: $\phi = 0.5 2.0 (5 17\% \text{ CH}_4)$

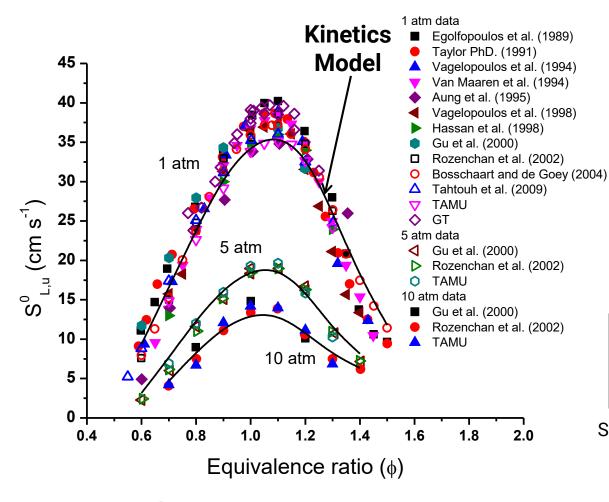
Ignition Chemistry

Ignition Delay Times Help Define Overall Kinetics Mechanism Reactivity


<u>Experimental Methodology</u>

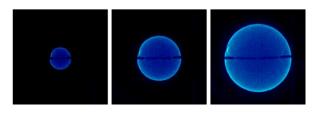
Ignition Delay Times for NG Blend

Lines = model


High Pressure Shock Tube at TAMU

Ignition Delay Time Measurement

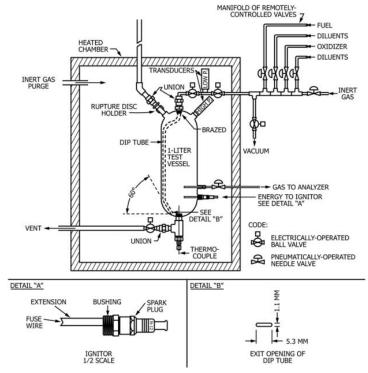
Laminar Flame Speed


Methane Laminar Flame Speed is fairly well studied

Experimental Methodology

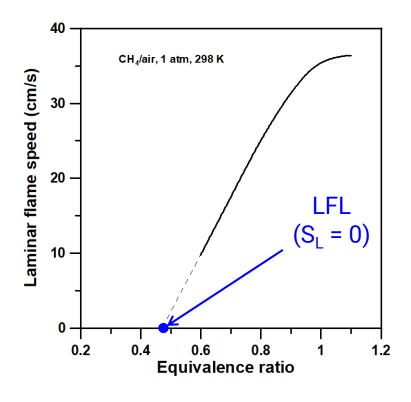
Constant-Volume Vessels at TAMU

Spherical, Laminar Flame Propagation



October 22, 2020

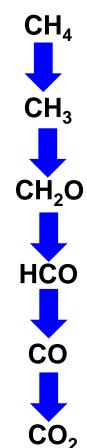
Lean Flammability Limit


Flammability Limits are routinely measured, but kinetics models are now good enough to do some predictions of LFL

Experimental Methodology

FL Apparatus (from ASTM E918-19)

Calculated from Flame Speed Kinetics

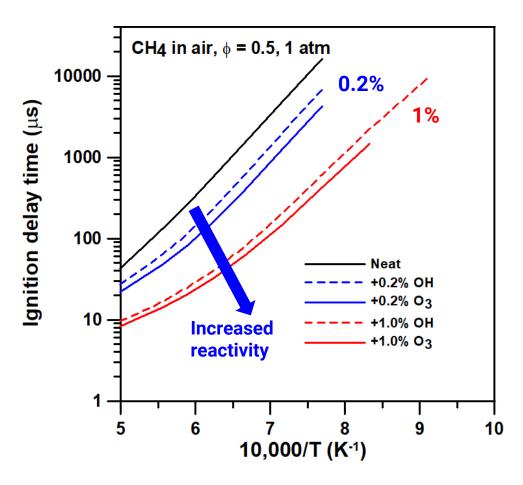


Key Reaction Steps and Effect of Radicals

Reactivity of methane oxidation depends greatly on radicals (OH, O, H, HO_2 , CH_3)

$$CH_4 + H \rightarrow CH_3 + H_2$$
 $CH_4 + OH \rightarrow CH_3 + H_2O$
 $CH_4 + O \rightarrow CH_3 + OH$

$$CH_3 + O_2 \rightarrow CH_2O + OH$$
 $H + O_2 \rightarrow OH + O$
 $CH_2O + OH \rightarrow HCO + H_2O$

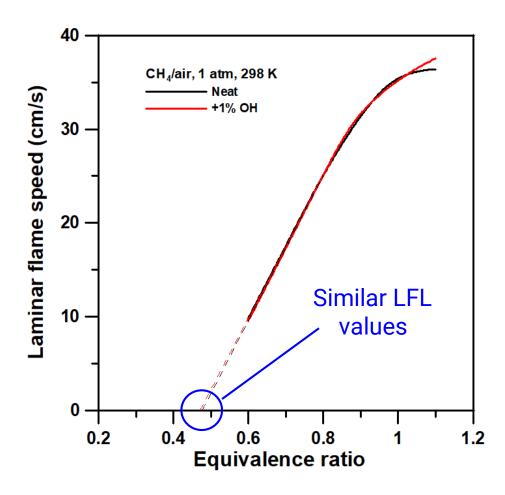

Effect of Additives and Impurities on CH Combustion

Reactivity and ignition of CH₄ can be sped up using additives

- HC impurities already in Natural Gas
 - $-C_2H_6$
 - C_3H_8
 - $-C_4H_{10}, C_5H_{12}$
- Hydrogen (leads to H, OH radicals)
- Silane; others (basically anything that produces H atoms)
- ► NO₂, N₂O, Ozone? (basically anything leading to OH or O)

OH Radical and Ozone Seeding

Models can be used to estimate effect of OH and O₃ addition to CH₄-Air combustion process



- Calcs using AramcoMech model
- $CH_4 Air at \phi = 0.5$
- OH represents infusion of radicals, for basic trend
- O₃ submechanism taken from Ju et al. (2016)

Effects of Seeding on CH₄ LFL

Models can be used to estimate effect of additives on to CH₄ LFL Using Laminar Flame Speed

- Preliminary calcs using AramcoMech model
- CH_4 Air at 1 atm
- OH represents infusion of radicals, for basic trend
- No real effect, but verdict is out for other additives, TBD
- Can use method for other mixture and conditions

Current Knowledge Gaps on CH₄ Chemical Kinetics

- Deficiencies in our ability to predict CH₄ chemical kinetics for:
 - Very lean conditions, ϕ < 0.5 (CH₄ < 5%)
 - Effect of additives and impurities on flammability limits in general
 - Effect of additives and impurities on ignition at very lean conditions